3.417 \(\int \frac {(e \sec (c+d x))^{3/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx\)

Optimal. Leaf size=483 \[ -\frac {i \sqrt {2} \sqrt {a} e^{3/2} \sec (c+d x) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {2} \sqrt {a} e^{3/2} \sec (c+d x) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {a} e^{3/2} \sec (c+d x) \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {a} e^{3/2} \sec (c+d x) \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

[Out]

1/2*I*e^(3/2)*ln(a-2^(1/2)*a^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a-I*a*tan
(d*x+c)))*sec(d*x+c)*a^(1/2)/d*2^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)-1/2*I*e^(3/2)*ln(a+2^
(1/2)*a^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/(e*sec(d*x+c))^(1/2)+cos(d*x+c)*(a-I*a*tan(d*x+c)))*sec(d*x+c)*
a^(1/2)/d*2^(1/2)/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)-I*e^(3/2)*arctan(1-2^(1/2)*e^(1/2)*(a-I*a*
tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*sec(d*x+c)*2^(1/2)*a^(1/2)/d/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*t
an(d*x+c))^(1/2)+I*e^(3/2)*arctan(1+2^(1/2)*e^(1/2)*(a-I*a*tan(d*x+c))^(1/2)/a^(1/2)/(e*sec(d*x+c))^(1/2))*sec
(d*x+c)*2^(1/2)*a^(1/2)/d/(a-I*a*tan(d*x+c))^(1/2)/(a+I*a*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.35, antiderivative size = 483, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {3499, 3495, 297, 1162, 617, 204, 1165, 628} \[ -\frac {i \sqrt {2} \sqrt {a} e^{3/2} \sec (c+d x) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {2} \sqrt {a} e^{3/2} \sec (c+d x) \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {a} e^{3/2} \sec (c+d x) \log \left (-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {a} e^{3/2} \sec (c+d x) \log \left (\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))+a\right )}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(e*Sec[c + d*x])^(3/2)/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((-I)*Sqrt[2]*Sqrt[a]*e^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c +
d*x]])]*Sec[c + d*x])/(d*Sqrt[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + (I*Sqrt[2]*Sqrt[a]*e^(3/2)*A
rcTan[1 + (Sqrt[2]*Sqrt[e]*Sqrt[a - I*a*Tan[c + d*x]])/(Sqrt[a]*Sqrt[e*Sec[c + d*x]])]*Sec[c + d*x])/(d*Sqrt[a
 - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) + (I*Sqrt[a]*e^(3/2)*Log[a - (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[a
- I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a*Tan[c + d*x])]*Sec[c + d*x])/(Sqrt[2]*d*Sqrt
[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]) - (I*Sqrt[a]*e^(3/2)*Log[a + (Sqrt[2]*Sqrt[a]*Sqrt[e]*Sqrt[
a - I*a*Tan[c + d*x]])/Sqrt[e*Sec[c + d*x]] + Cos[c + d*x]*(a - I*a*Tan[c + d*x])]*Sec[c + d*x])/(Sqrt[2]*d*Sq
rt[a - I*a*Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 3495

Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(-4*b*d^
2)/f, Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b,
 d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rule 3499

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[(d*Sec
[e + f*x])/(Sqrt[a - b*Tan[e + f*x]]*Sqrt[a + b*Tan[e + f*x]]), Int[Sqrt[d*Sec[e + f*x]]*Sqrt[a - b*Tan[e + f*
x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0]

Rubi steps

\begin {align*} \int \frac {(e \sec (c+d x))^{3/2}}{\sqrt {a+i a \tan (c+d x)}} \, dx &=\frac {(e \sec (c+d x)) \int \sqrt {e \sec (c+d x)} \sqrt {a-i a \tan (c+d x)} \, dx}{\sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {\left (4 i a e^3 \sec (c+d x)\right ) \operatorname {Subst}\left (\int \frac {x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=-\frac {\left (2 i a e^2 \sec (c+d x)\right ) \operatorname {Subst}\left (\int \frac {a-e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (2 i a e^2 \sec (c+d x)\right ) \operatorname {Subst}\left (\int \frac {a+e x^2}{a^2+e^2 x^4} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {(i a e \sec (c+d x)) \operatorname {Subst}\left (\int \frac {1}{\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {(i a e \sec (c+d x)) \operatorname {Subst}\left (\int \frac {1}{\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}+x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (i \sqrt {a} e^{3/2} \sec (c+d x)\right ) \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}+2 x}{-\frac {a}{e}-\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (i \sqrt {a} e^{3/2} \sec (c+d x)\right ) \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt {a}}{\sqrt {e}}-2 x}{-\frac {a}{e}+\frac {\sqrt {2} \sqrt {a} x}{\sqrt {e}}-x^2} \, dx,x,\frac {\sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}\right )}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=\frac {i \sqrt {a} e^{3/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {a} e^{3/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {\left (i \sqrt {2} \sqrt {a} e^{3/2} \sec (c+d x)\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {\left (i \sqrt {2} \sqrt {a} e^{3/2} \sec (c+d x)\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right )}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ &=-\frac {i \sqrt {2} \sqrt {a} e^{3/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {2} \sqrt {a} e^{3/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {a} \sqrt {e \sec (c+d x)}}\right ) \sec (c+d x)}{d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}+\frac {i \sqrt {a} e^{3/2} \log \left (a-\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}-\frac {i \sqrt {a} e^{3/2} \log \left (a+\frac {\sqrt {2} \sqrt {a} \sqrt {e} \sqrt {a-i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}}+\cos (c+d x) (a-i a \tan (c+d x))\right ) \sec (c+d x)}{\sqrt {2} d \sqrt {a-i a \tan (c+d x)} \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.30, size = 302, normalized size = 0.63 \[ \frac {2 e \sqrt {\tan \left (\frac {d x}{2}\right )+i} (\cos (d x)+i \sin (d x)) \sqrt {e \sec (c+d x)} \left (\sqrt {-\sin (c)-i \cos (c)-1} \sqrt {-\sin (c)+i \cos (c)+1} \tanh ^{-1}\left (\frac {\sqrt {-\sin (c)+i \cos (c)+1} \sqrt {-\tan \left (\frac {d x}{2}\right )+i}}{\sqrt {\sin (c)+i \cos (c)-1} \sqrt {\tan \left (\frac {d x}{2}\right )+i}}\right )-\sqrt {\sin (c)-i \cos (c)+1} \sqrt {\sin (c)+i \cos (c)-1} \tanh ^{-1}\left (\frac {\sqrt {\sin (c)-i \cos (c)+1} \sqrt {-\tan \left (\frac {d x}{2}\right )+i}}{\sqrt {-\sin (c)-i \cos (c)-1} \sqrt {\tan \left (\frac {d x}{2}\right )+i}}\right )\right )}{d \sqrt {-\sin (c)-i \cos (c)-1} \sqrt {\sin (c)+i \cos (c)-1} \sqrt {-\tan \left (\frac {d x}{2}\right )+i} \sqrt {a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Sec[c + d*x])^(3/2)/Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

(2*e*Sqrt[e*Sec[c + d*x]]*(ArcTanh[(Sqrt[1 + I*Cos[c] - Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 + I*Cos[c] +
Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[1 + I*Cos[c] - Sin[c]] - ArcTanh[(Sqrt[1 -
I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]])/(Sqrt[-1 - I*Cos[c] - Sin[c]]*Sqrt[I + Tan[(d*x)/2]])]*Sqrt[1 - I*C
os[c] + Sin[c]]*Sqrt[-1 + I*Cos[c] + Sin[c]])*(Cos[d*x] + I*Sin[d*x])*Sqrt[I + Tan[(d*x)/2]])/(d*Sqrt[-1 - I*C
os[c] - Sin[c]]*Sqrt[-1 + I*Cos[c] + Sin[c]]*Sqrt[I - Tan[(d*x)/2]]*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 1.24, size = 385, normalized size = 0.80 \[ \frac {1}{2} \, \sqrt {\frac {4 i \, e^{3}}{a d^{2}}} \log \left (\frac {2 \, {\left (e e^{\left (2 i \, d x + 2 i \, c\right )} + e\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + i \, a d \sqrt {\frac {4 i \, e^{3}}{a d^{2}}}}{e}\right ) - \frac {1}{2} \, \sqrt {\frac {4 i \, e^{3}}{a d^{2}}} \log \left (\frac {2 \, {\left (e e^{\left (2 i \, d x + 2 i \, c\right )} + e\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} - i \, a d \sqrt {\frac {4 i \, e^{3}}{a d^{2}}}}{e}\right ) + \frac {1}{2} \, \sqrt {-\frac {4 i \, e^{3}}{a d^{2}}} \log \left (\frac {2 \, {\left (e e^{\left (2 i \, d x + 2 i \, c\right )} + e\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} + i \, a d \sqrt {-\frac {4 i \, e^{3}}{a d^{2}}}}{e}\right ) - \frac {1}{2} \, \sqrt {-\frac {4 i \, e^{3}}{a d^{2}}} \log \left (\frac {2 \, {\left (e e^{\left (2 i \, d x + 2 i \, c\right )} + e\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {e}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c\right )} - i \, a d \sqrt {-\frac {4 i \, e^{3}}{a d^{2}}}}{e}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

1/2*sqrt(4*I*e^3/(a*d^2))*log((2*(e*e^(2*I*d*x + 2*I*c) + e)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*
d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c) + I*a*d*sqrt(4*I*e^3/(a*d^2)))/e) - 1/2*sqrt(4*I*e^3/(a*d^2))*log((
2*(e*e^(2*I*d*x + 2*I*c) + e)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x
 + 1/2*I*c) - I*a*d*sqrt(4*I*e^3/(a*d^2)))/e) + 1/2*sqrt(-4*I*e^3/(a*d^2))*log((2*(e*e^(2*I*d*x + 2*I*c) + e)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c) + I*a*d*sqrt(-4*I*
e^3/(a*d^2)))/e) - 1/2*sqrt(-4*I*e^3/(a*d^2))*log((2*(e*e^(2*I*d*x + 2*I*c) + e)*sqrt(a/(e^(2*I*d*x + 2*I*c) +
 1))*sqrt(e/(e^(2*I*d*x + 2*I*c) + 1))*e^(1/2*I*d*x + 1/2*I*c) - I*a*d*sqrt(-4*I*e^3/(a*d^2)))/e)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {3}{2}}}{\sqrt {i \, a \tan \left (d x + c\right ) + a}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate((e*sec(d*x + c))^(3/2)/sqrt(I*a*tan(d*x + c) + a), x)

________________________________________________________________________________________

maple [A]  time = 1.25, size = 232, normalized size = 0.48 \[ \frac {\left (\frac {e}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \left (\cos ^{2}\left (d x +c \right )\right ) \left (-1+\cos \left (d x +c \right )\right )^{2} \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (i \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right )-i \arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right )+\arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1+\sin \left (d x +c \right )\right )}{2}\right )+\arctanh \left (\frac {\sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \left (\cos \left (d x +c \right )+1-\sin \left (d x +c \right )\right )}{2}\right )\right )}{d \sin \left (d x +c \right )^{3} \left (\frac {1}{1+\cos \left (d x +c \right )}\right )^{\frac {3}{2}} \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )-1\right ) a} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^(1/2),x)

[Out]

1/d*(e/cos(d*x+c))^(3/2)*cos(d*x+c)^2*(-1+cos(d*x+c))^2*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(I*arct
anh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))-I*arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)
+1-sin(d*x+c)))+arctanh(1/2*(1/(1+cos(d*x+c)))^(1/2)*(cos(d*x+c)+1+sin(d*x+c)))+arctanh(1/2*(1/(1+cos(d*x+c)))
^(1/2)*(cos(d*x+c)+1-sin(d*x+c))))/sin(d*x+c)^3/(1/(1+cos(d*x+c)))^(3/2)/(I*sin(d*x+c)+cos(d*x+c)-1)/a

________________________________________________________________________________________

maxima [A]  time = 1.05, size = 726, normalized size = 1.50 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))^(3/2)/(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-1/4*(2*I*sqrt(2)*e*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*
e*arctan2(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*e*arctan2(sqrt(2)
*cos(1/2*d*x + 1/2*c) - 1, sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) + 2*I*sqrt(2)*e*arctan2(sqrt(2)*cos(1/2*d*x + 1/2
*c) - 1, -sqrt(2)*sin(1/2*d*x + 1/2*c) + 1) - 2*sqrt(2)*e*arctan2(sqrt(2)*sin(1/2*d*x + 1/2*c) + sin(d*x + c),
 sqrt(2)*cos(1/2*d*x + 1/2*c) + cos(d*x + c) + 1) + 2*sqrt(2)*e*arctan2(-sqrt(2)*sin(1/2*d*x + 1/2*c) + sin(d*
x + c), -sqrt(2)*cos(1/2*d*x + 1/2*c) + cos(d*x + c) + 1) + I*sqrt(2)*e*log(2*sqrt(2)*sin(d*x + c)*sin(1/2*d*x
 + 1/2*c) + 2*(sqrt(2)*cos(1/2*d*x + 1/2*c) + 1)*cos(d*x + c) + cos(d*x + c)^2 + 2*cos(1/2*d*x + 1/2*c)^2 + si
n(d*x + c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 1) - I*sqrt(2)*e*log(-2*sqrt(2)*sin
(d*x + c)*sin(1/2*d*x + 1/2*c) - 2*(sqrt(2)*cos(1/2*d*x + 1/2*c) - 1)*cos(d*x + c) + cos(d*x + c)^2 + 2*cos(1/
2*d*x + 1/2*c)^2 + sin(d*x + c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 1) - sqrt(2)*e
*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*
d*x + 1/2*c) + 2) + sqrt(2)*e*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x
+ 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*e*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*
c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*e*log(2*cos(1/2*d*x + 1/
2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*sqrt
(e)/(sqrt(a)*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e/cos(c + d*x))^(3/2)/(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int((e/cos(c + d*x))^(3/2)/(a + a*tan(c + d*x)*1i)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (e \sec {\left (c + d x \right )}\right )^{\frac {3}{2}}}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*sec(d*x+c))**(3/2)/(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral((e*sec(c + d*x))**(3/2)/sqrt(I*a*(tan(c + d*x) - I)), x)

________________________________________________________________________________________